Exercise 17

Prove the statement using the ε, δ definition of a limit and illustrate with a diagram like Figure 9 .

$$
\lim _{x \rightarrow-3}(1-4 x)=13
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-(-3)|<\delta \quad \text { then } \quad|(1-4 x)-13|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x+3|$.

$$
\begin{gathered}
|(1-4 x)-13|<\varepsilon \\
|-4 x-12|<\varepsilon \\
|-4(x+3)|<\varepsilon \\
4|x+3|<\varepsilon \\
|x+3|<\frac{\varepsilon}{4}
\end{gathered}
$$

Choose $\delta=\varepsilon / 4$. Now, assuming that $|x+3|<\delta$,

$$
\begin{aligned}
&|(1-4 x)-13|=|-4 x-12| \\
&=|-4(x+3)| \\
&=4|x+3| \\
&<4 \delta \\
&=4\left(\frac{\varepsilon}{4}\right) \\
&=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow-3}(1-4 x)=13
$$

Below is an illustration like Figure 9.

